A single amino acid, glu146, governs the substrate specificity of a human dopamine sulfotransferase, SULT1A3.
نویسندگان
چکیده
Sulfation, catalyzed by members of the sulfotransferase (SULT) superfamily, exerts considerable influence over the biological activity of numerous endogenous and xenobiotic chemicals. In humans, catecholamines such as dopamine are extensively sulfated, and a SULT isoform (SULT1A3 or the monoamine-sulfating form of phenolsulfotransferase) has evolved with considerable selectivity for dopamine and other biogenic amines. To investigate the molecular basis for this selectivity, we identified a region of SULT1A3, which, we hypothesized, contributes to its preference for biogenic amines, and mutated two amino acids within this domain to the corresponding residues in a closely related but functionally distinct phenol sulfotransferase, SULT1A1 (H143Y and E146A). The change of a single amino acid, E146A, was sufficient to transform the catalytic properties and substrate preference of SULT1A3, such that they closely resembled those of SULT1A1. These experiments confirm the functional role of Glu146 in the selectivity of SULT1A3 for biogenic amines and suggest that this region is a key determinant of sulfotransferase substrate specificity.
منابع مشابه
Analysis of the substrate specificity of human sulfotransferases SULT1A1 and SULT1A3: site-directed mutagenesis and kinetic studies.
Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitroph...
متن کاملHuman catecholamine sulfotransferase (SULT1A3) pharmacogenetics: functional genetic polymorphism.
Sulfotransferase (SULT) 1A3 catalyzes the sulfate conjugation of catecholamines and structurally related drugs. As a step toward studies of the possible contribution of inherited variation in SULT1A3 to the pathophysiology of human disease and/or variation in response to drugs related to catecholamines, we have resequenced all seven coding exons, three upstream non-coding exons, exon-intron spl...
متن کاملX-ray crystal structure of human dopamine sulfotransferase, SULT1A3. Molecular modeling and quantitative structure-activity relationship analysis demonstrate a molecular basis for sulfotransferase substrate specificity.
Humans are one of the few species that produce large amounts of catecholamine sulfates, and they have evolved a specific sulfotransferase, SULT1A3 (M-PST), to catalyze the formation of these conjugates. An orthologous protein has yet to be found in other species. To further our understanding of the molecular basis for the unique substrate selectivity of this enzyme, we have solved the crystal s...
متن کاملSpectrofluorometric assay for monoamine-preferring phenol sulfotransferase (SULT1A3).
A continuous and real-time fluorometric assay for monoamine-preferring phenol sulfotransferase (SULT1A3) was developed. The methodology was based on the coupling of SULT1A1 to regenerate 3'-phosphoadenosine-5'-phosphosulfate (PAPS) using 4-methylumbelliferyl sulfate (MUS) as a sulfuryl group donor. The fluorophore product (4-methylumbelliferone, MU) was continuously produced and monitored when ...
متن کاملUnique properties of a renal sulfotransferase, St1d1, in dopamine metabolism.
Although catecholamine sulfation is higher in the kidney than in the liver of mice, no detectable amounts of previously reported sulfotransferases (STs) such as St1a, St1b, St1c, and St1e were expressed in mouse kidney cytosols. A new sulfotransferase (St1d1) cDNA was isolated from kidney cDNA library of BALB/c strain by reverse transcription-polymerase chain reaction (RTPCR) using information ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 54 6 شماره
صفحات -
تاریخ انتشار 1998